Uniqueness, Renormalization, and Smooth Approximations for Linear Transport Equations

نویسندگان

  • François Bouchut
  • Gianluca Crippa
چکیده

Transport equations arise in various areas of fluid mechanics, but the precise conditions on the vector field for them to be well-posed are still not fully understood. The renormalized theory of DiPerna and Lions for linear transport equations with unsmooth coefficient uses the tools of approximation of an arbitrary weak solution by smooth functions, and the renormalization property, that is to say to write down an equation on a nonlinear function of the solution. Under some W 1,1 regularity assumption on the coefficient, wellposedness holds. In this paper, we establish that these properties are indeed equivalent to the uniqueness of weak solutions to the Cauchy problem, without any regularity assumption on the coefficient. Coefficients with unbounded divergence but with bounded compression are also considered. Key-words: linear transport equations with unsmooth coefficient – renormalized solutions – approximation by smooth functions – coefficients of bounded compression Mathematics Subject Classification: 35R05, 35F99, 35L99

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and Iterative Approximations of Solution for Generalized Yosida Approximation Operator

In this paper, we introduce and study a generalized Yosida approximation operator associated to H(·, ·)-co-accretive operator and discuss some of its properties. Using the concept of graph convergence and resolvent operator, we establish the convergence for generalized Yosida approximation operator. Also, we show an equivalence between graph convergence for H(·, ·)-co-accretive operator and gen...

متن کامل

Notes on Hyperbolic Systems of Conservation Laws and Transport Equations

Contents 1. Introduction 2 1.1. The Keyfitz and Kranzer system 2 1.2. Bressan's compactness conjecture 3 1.3. Ambrosio's renormalization Theorem 4 1.4. Well–posedness for the Keyfitz and Kranzer system 5 1.5. Renormalization conjecture for nearly incompressible BV fields 6 1.6. Plan of the paper 7 2. Preliminaries 8 2.1. Notation 8 2.2. Measure theory 9 2.3. Approximate continuity and approxima...

متن کامل

A finite difference method for the smooth solution of linear Volterra integral equations

The present paper proposes a fast numerical method for the linear Volterra integral equations withregular and weakly singular kernels having smooth solutions. This method is based on the approx-imation of the kernel, to simplify the integral operator and then discretization of the simpliedoperator using a forward dierence formula. To analyze and verify the accuracy of the method, weexamine samp...

متن کامل

The Uniqueness Theorem for the Solutions of Dual Equations of Sturm-Liouville Problems with Singular Points and Turning Points

In this paper, linear second-order differential equations of Sturm-Liouville type having a finite number of singularities and turning points in a finite interval are investigated. First, we obtain the dual equations associated with the Sturm-Liouville equation. Then, we prove the uniqueness theorem for the solutions of dual initial value problems.

متن کامل

Existence of positive solution to a class of boundary value problems of fractional differential equations

This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2006